2025/9/18 11:48

View Submission | Gradescope

v proj2a.ipynb & Download

In [1]:

In [2]:

Initialize Otter
import otter
grader = otter.Notebook ("proj2a.ipynb")

Project 2A: Spam/Ham Classification

Feature Engineering, Logistic Regression
Due Date: Thursday April 21, 11:59PM PDT

Collaboration Policy

Data science is a collaborative activity. While you may talk with others about the
homework, we ask that you write your solutions individually. If you do discuss the
assignments with others please include their names at the top of your notebook.

Collaborators: /ist collaborators here

This Assignment

You will use what you've learned in class to create a classifier that can distinguish spam
(junk or commercial or bulk) emails from ham (non-spam) emails. In addition to providing
some skeleton code to fill in, we will evaluate your work based on your model's accuracy
and your written responses in this notebook.

After this homework, you should feel comfortable with the following:

e Feature engineering with text data
e Using sklearn libraries to process data and fit models
e Validating the performance of your model and minimizing overfitting

e Generating and analyzing precision-recall curves

This first part of the project focuses on initial analysis. In the second part of this project (to
be released next week), you will build your own spam/ham classifier.

Warning

This is a real world dataset - the emails you are trying to classify are actual spam and
legitimate emails. As a result, some of the spam emails may be in poor taste or be
considered inappropriate. We think the benefit of working with realistic data outweighs
these innapropriate emails, and wanted to give a warning at the beginning of the
homework so that you are made aware.

Run this cell to suppress all FutureWarnings
import warnings
warnings.filterwarnings ("ignore", category=FutureWarning)

more readable exceptions
$pip install --quiet iwut
$load_ext iwut

Swut on

Note: you may need to restart the kernel to use updated packages.

https://www.gradescope.com/courses/353100/assignments/1993791/submissions/123391317?view=files 2/15

2025/9/18 11:48 View Submission | Gradescope
Score Breakdown

Question Points
1 2
2 3
3 3
4 2
5 2
6a 1
6b 1
6C 2
6d 2
6e 1
6f 3
Total 22

Part 1: Initial Analysis

[n [3]: import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
$matplotlib inline

import seaborn as sns

sns.set (style = "whitegrid",
color_codes = True,
font_scale = 1.5)

Loading in the Data

In email classification, our goal is to classify emails as spam or not spam (referred to as
"ham") using features generated from the text in the email.

https://www.gradescope.com/courses/353100/assignments/1993791/submissions/123391317?view=files 3/15

2025/9/18 11:48 View Submission | Gradescope
The dataset is from SpamAssassin. It consists of email messages and their labels (0 for ham,
1 for spam). Your labeled training dataset contains 8348 labeled examples, and the
unlabeled test set contains 1000 unlabeled examples.

Note: The dataset is from 2004, so the contents of emails might be very different from
those in 2022.

Run the following cells to load the data into DataFrames.

The train DataFrame contains labeled data that you will use to train your model. It
contains four columns:

id: An identifier for the training example
subject : The subject of the email

email : The text of the email

Ssow N

spam: 1 if the email is spam, 0 if the email is ham (not spam)

The test DataFrame contains 1000 unlabeled emails. You will predict labels for these
emails and submit your predictions to the autograder for evaluation.

[n [4]: import zipfile
with zipfile.ZipFile('spam ham data.zip') as item:
item.extractall ()

Tn [5]: original training data = pd.read csv('train.csv')
test = pd.read csv('test.csv')

f Convert the emails to lower case as a first step to processing the text

original training data['email'] =

original training data['email'].str.lower ()

test['email'] = test['email'].str.lower ()

original_ training data.head()

Out [5]: id subject \
Subject: A&L Daily to be auctioned in bankrupt...
Subject: Wired: "Stronger ties between ISPs an...
Subject: It's just too small

Subject: liberal defnitions\n
Subject: RE: [ILUG] Newbie seeks advice - Suse...

S w NN PO
S W NP O

email spam
url: http://boingboing.net/#85534171\n date: n... 0
url: http://scriptingnews.userland.com/backiss...
<html>\n <head>\n </head>\n <body>\n <font siz...
depends on how much over spending vs. how much...

Sw N PO
o O B O

hehe sorry but if you hit caps lock twice the

In [6]: original training dataloriginal training data['spam']==1][70:80]

Out [6]: id subject \
308 308 Subject: Is Neotropin right for you?\n
311 311 Subject: Brighten Those Teeth\n
312 312 Subject: The database that Bill Gates doesnt w...
322 322 Subject: Keep porn free...\n
324 324 Subject: Real Drugs-Viagra and Phentrimine!\n
326 326 Subject: RE: MEN & WOMEN, TURBO BOOST YOUR DRI...
327 327 Subject: Financial Freedom That You Deserve...\n

https://www.gradescope.com/courses/353100/assignments/1993791/submissions/123391317?view=files 4/15

2025/9/18 11:48

In [7]:

In [8]:

View Submission | Gradescope

330 330 Subject: VTGE 7/22/2002 10:24:24 PM\n
337 337 Subject: Low Cost High Rated Insurance. Why Pa...
338 338 Subject: Have You Dreamed Of Your Own Home Bas...

email spam

308 <html><body><center><a href=http://www.vitafac... 1
311 <!-- saved from url=3d(0022)http://internet.e-... 1
312 important notice: regarding your domain name\... 1
322 this is a multi-part message in mime format.\n... 1
324 <html>\n <head>\n <meta http-equiv="content-ty... 1
326 <html>\n \n <head>\n <meta http-equiv=3d"conte... 1
327 <html><head><title></title></head>\n <body bgc... 1
330 dear me ,\n \n <!-- saved from url=(0022)http:... 1
337 <html>\n <head>\n <body>\n \n <table bgcolor=3... 1
338 -———-- = nextpart 000 00x9 70allcld.el2323j43\n 1

First, let's check if our data contains any missing values. We have filled in the cell below to
print the number of NaN values in each column. If there are NaN values, we replace them
with appropriate filler values (i.e., NaN values in the suciect Or email columns will be
replaced with empty strings). Finally, we print the number of NaN values in each column
after this modification to verify that there are no NaN values left.

Note that while there are no NaN values in the spar column, we should be careful when
replacing NaN labels. Doing so without consideration may introduce significant bias into
our model when fitting.

print ('Before imputation:')
print (original training data.isnull().sum())
original training data = original training data.fillna('")

print ('"After imputation:'")

print (original training data.isnull().sum())

Before imputation:

id 0
subject 6
email 0
spam 0

dtype: int64

After imputation:

id 0
subject 0
email 0
spam 0

dtype: int64

Question 1

In the cell below, we have printed the text of the cnzi1 field for the first ham and the first
spam email in the original training set.

first ham = original training data.loc[original training data['spam'] == 0,
'email'].iloc[0]
first spam = original training data.loc[original training data['spam'] == 1,
'email'].iloc[0]

print (first_ham)
print (first spam)

https://www.gradescope.com/courses/353100/assignments/1993791/submissions/123391317?view=files

5/15

2025/9/18 11:48 View Submission | Gradescope

url: http://boingboing.net/#85534171
date: not supplied

arts and letters daily, a wonderful and dense blog, has folded up its tent due
to the bankruptcy of its parent company. a&l daily will be auctioned off by the
receivers. link[1] discuss[2] (_thanks, misha!)

[1] http://www.aldaily.com/
[2] http://www.quicktopic.com/boing/h/zlfterjnd6jf

<html>
<head>
</head>
<body>
 a man endowed with a 7-8" hammer is simply

better equipped than a man with a 5-6"hammer.

would you rather have
more than enough to get the job done or fall =
short. it's totally up
to you. our methods are guaranteed to increase y=
our size by 1-3"
 <a href=3d"http://209.163.187.47/cgi-bin/index.php?10=
004">come in here and see how
</body>
</html>

Discuss one thing you notice that is different between the two emails that might relate to
the identification of spam.

e T noticed that the spam email tends to have html and body tags and is much
longer than the ham email. It may because the spam email would contains the
advertisements or others, it make us easy to observe which emails tends to be

spam.

Training-Validation Split

The training data we downloaded is all the data we have available for both training models
and validating the models that we train. We therefore need to split the training data into
separate training and validation datsets. You will need this validation data to assess the
performance of your classifier once you are finished training. Note that we set the seed
(random state) to 42. This will produce a pseudo-random sequence of random numbers
that is the same for every student. Do not modify this random seed in the following
questions, as our tests depend on it.

In [9]: # This creates a 90/10 train-validation split on our labeled data
from sklearn.model selection import train test split

train, val = train test split(original training data, test size = 0.1,
random state = 42)

Part 2: Basic Feature Engineering

https://www.gradescope.com/courses/353100/assignments/1993791/submissions/123391317?view=files 6/15

2025/9/18 11:48

In [10]:

In [11]:

Out [11]:

View Submission | Gradescope
We would like to take the text of an email and predict whether the email is ham or spam.
This is a classification problem, so we can use logistic regression to train a classifier. Recall
that to train a logistic regression model we need a numeric feature matrix X and a vector
of corresponding binary labels y. Unfortunately, our data are text, not numbers. To
address this, we can create numeric features derived from the email text and use those
features for logistic regression.

Each row of X is an email. Each column of X contains one feature for all the emails. We'll
guide you through creating a simple feature, and you'll create more interesting ones as
you try to increase the accuracy of your model.

Question 2

Create a function called woras in texts that takes in a list of woras and a pandas Series of
email texts. It should output a 2-dimensional NumPy array containing one row for each
email text. The row should contain either a 0 or a 1 for each word in the list: 0 if the word
doesn't appear in the text and 1 if the word does. For example:

>>> words in texts(['hello', 'bye', 'world'],

pd.Series(['hello', 'hello worldhello']))

The provided tests make sure that your function works correctly, so that you can use it for future

questions.

def words_in texts(words, texts):

Args:

words (list): words to find

texts (Series): strings to search in
Returns:

NumPy array of 0Os and 1s with shape (n, p) where n is the
number of texts and p is the number of words.
rt_lists = []
for i in texts:
subset_1ls = []
for j in words:
if j in 1i:
subset ls.append (1)
else:
subset ls.append(0)
rt_lists.append(subset 1ls)
indicator array = np.asarray(rt lists)
return indicator array

grader.check ("g2")

g2 results: All test cases passed!

Basic EDA

https://www.gradescope.com/courses/353100/assignments/1993791/submissions/123391317?view=files

7/15

2025/9/18 11:48 View Submission | Gradescope

We need to identify some features that allow us to distinguish spam emails from ham
emails. One idea is to compare the distribution of a single feature in spam emails to the
distribution of the same feature in ham emails. If the feature is itself a binary indicator,
such as whether a certain word occurs in the text, this amounts to comparing the
proportion of spam emails with the word to the proportion of ham emails with the word.

The following plot (which was created using sns.barpiot) compares the proportion of
emails in each class containing a particular set of words.

bitraining conditional proportions

You can use DataFrame's .nc1t method to "unpivot" a DataFrame. See the following code
cell for an example.

In [12]: from IPython.display import display, Markdown
df = pd.DataFrame ({
'word 1': [1, O, 1, O],
'word 2': [0, 1, O, 1],
'type': ['spam', 'ham', 'ham', 'ham']

})

display (Markdown ("> Our Original DataFrame has a “type column and some
columns corresponding to words. You can think of each row as a sentence, and
the value of 1 or 0 indicates the number of occurences of the word in this
sentence."))

display(df);

display (Markdown ("> "melt” will turn columns into entries in a variable
column. Notice how ‘word 1° and ‘word 2° become entries in “variable’; their
values are stored in the value column."))

display(df.melt ("type"))
Our Original DataFrame has a type column and some columns corresponding to

words. You can think of each row as a sentence, and the value of 1 or 0 indicates the
number of occurences of the word in this sentence.

word 1 word 2 type

0 1 0 spam
1 0 1 ham
2 1 0 ham
3 0 1 ham

melt Will turn columns into entries in a variable column. Notice how wora 1 and
word 2 become entries in varianie| their values are stored in the value column.

type variable value
spam word_1
ham word 1
ham word 1

spam word_2
ham word_2

0

1

2

3 ham word 1
4

5

6 ham word 2
7

H O F O O F O

ham word 2

Question 3

Create a bar chart like the one above comparing the proportion of spam and ham emails
containing certain words. Choose a set of words that are different from the ones above,

https://www.gradescope.com/courses/353100/assignments/1993791/submissions/123391317?view=files

8/15

2025/9/18 11:48

In [13]:

View Submission | Gradescope

but also have different proportions for the two classes. Make sure to only consider emails
from [train.

train = train.reset_index (drop=True) # We must do this in order to preserve

the ordering of emails to labels for words_in texts

word freq list = words_in texts(['sale', 'free',6 'investment', 'opportunity’,
'click', 'lowest'], train(['email'])

sale = [item[0] for item in word freq list]

free = [item[1] for item in word freq list]

investment = [item[2] for item in word freq list]

opportunity = [item[3] for item in word freq list]

click = [item[4] for item in word freq list]

lowest = [item[5] for item in word freq list]

train_subset = pd.DataFrame(data= {'sale':sale, 'free':free,
'investment':investment, 'opportunity':opportunity, 'click':click,
'lowest': lowest,

'spam_or not':train['spam']})

new _col = train subset['spam or not'].replace({0:'Ham',1:'Spam'}, inplace

True)
melted train = train subset.melt ('spam or not')

plt.figure (figsize = (10,10))

sns.barplot (x="variable", y="value", hue = 'spam or not', ci =None,
melted train)

plt.xlabel ("Words")

plt.ylabel ("Proportion of Emails")

plt.title('Frequency of Words in Spam/Ham Emails')
plt.gca().legend() .set_title('")

https://www.gradescope.com/courses/353100/assignments/1993791/submissions/123391317?view=files

9/15

2025/9/18 11:48

View Submission | Gradescope

Frequency of Words in Spam/Ham Emails

B Ham
e Spam
0.5 |
0.4
L
©
E
L
(T
© 03
c
2
§
o
&
a 0.2
) I I I
sale free investmentopportunity click lowest

Words

When the feature is binary, it makes sense to compare its proportions across classes (as in
the previous question). Otherwise, if the feature can take on numeric values, we can
compare the distributions of these values for different classes.

Part 3: Basic Classification

Notice that the output of words in texts(words, train['email']) IS @ numeric matrix
containing features for each email. This means we can use it directly to train a classifier!

Question 4

We've given you 5 words that might be useful as features to distinguish spam/ham emails.
Use these words as well as the tr=:n DataFrame to create two NumPy arrays: x cr=in and

Y train|.

x train Should be a matrix of Os and 1s created by using your words in texts function on
all the emails in the training set.

v train Should be a vector of the correct labels for each email in the training set.
The provided tests check that the dimensions of your feature matrix (X) are correct, and that

your features and labels are binary (i.e. consists of only 0's and 1's). It does not check that your
function is correct; that was verified in a previous question.

https://www.gradescope.com/courses/353100/assignments/1993791/submissions/123391317?view=files 10/15

2025/9/18 11:48 View Submission | Gradescope
In [14]: some words = ['drug', 'bank', 'prescription', 'memo', 'private']

X _train = words_in texts(some_words, train['email'])

Y train = train['spam'].values

X _train[:5], Y train[:5]

Out [14]: (array([[0O, 0, 0, 0O, O],
o, o, o, 0, 01,
o, o, o, 0, 01,
o, o, o, 0, 01,
[0, 0, 0, 1, 011),
array ([0, 0, 0, 0, 0]))
Tn [15]: grader.check ("g4")
Out [15]: g4 results: All test cases passed!

Question 5

Now that we have matrices, we can build a model with scixit-1carn! Using the

LogisticRegression Classifier, train a logistic regression model using x trzin @and v train.
Then, output the model's training accuracy below. You should get an accuracy of around
0.75

The provided test checks that you initialized your logistic regression model correctly.

In [16]: from sklearn.linear model import LogisticRegression

model = LogisticRegression(fit intercept=True)
model.fit (X _train, Y train)

training accuracy = model.score(X_ train, Y train)
print ("Training Accuracy: ", training accuracy)

Training Accuracy: 0.7576201251164648

In [17]: grader.check ("g5")

Out [17]: g5 results: All test cases passed!

Part 4: Evaluating Classifiers

That doesn't seem too shabby! But the classifier you made above isn't as good as the
accuracy would make you believe. First, we are evaluating accuracy on the training set,
which may provide a misleading accuracy measure. Accuracy on the training set doesn't
always translate to accuracy in the real world (on the test set). In future parts of this
analysis, we will hold out some of our data for model validation and comparison.

Presumably, our classifier will be used for filtering, i.e. preventing messages labeled span
from reaching someone's inbox. There are two kinds of errors we can make:

https://www.gradescope.com/courses/353100/assignments/1993791/submissions/123391317?view=files 11/15

2025/9/18 11:48

In [18]:

Out [18]:

In [19]:

Out [19]:

View Submission | Gradescope

e False positive (FP): a ham email gets flagged as spam and filtered out of the
inbox.
e False negative (FN): a spam email gets mislabeled as ham and ends up in the

inbox.
To be clear, we label spam emails as 1 and ham emails as 0. These definitions depend both
on the true labels and the predicted labels. False positives and false negatives may be of
differing importance, leading us to consider more ways of evaluating a classifier, in
addition to overall accuracy:

Precision measures the proportion of emails flagged as spam that are actually

TP
TP+FP
spam.

. TP .
Recall measures the proportion 75 Fy of spam emails that were correctly flagged as
spam.

; FP . .
False-alarm rate measures the proportion 57y of ham emails that were incorrectly

flagged as spam.

The below graphic (modified slightly from Wikipedia) may help you understand precision
and recall visually: llfiprecision_recall

Note that a true positive (TP) is a spam email that is classified as spam, and a true negative
(TN) is a ham email that is classified as ham.

Question 6

Question 6a

Suppose we have a classifier zero predictor that always predicts 0 (never predicts positive).
How many false positives and false negatives would this classifier have if it were evaluated
on the training set and its results were compared to v train? Fill in the variables below
(feel free to hard code your answers for this part):

Tests in Question 6 only check that you have assigned appropriate types of values to each
response variable, but do not check that your answers are correct.

zero predictor fp = 0
zero predictor fn = sum(l == Y train)
zero_predictor_fp, zero_predictor_fn

(0, 1918)

grader.check ("g6a")

gba results: All test cases passed!

Question 6b

What is the accuracy and recall of zero predictor (classifies every email as ham) on the
training set? Do NOT use any skiearn functions.

https://www.gradescope.com/courses/353100/assignments/1993791/submissions/123391317?view=files

12/15

2025/9/18 11:48

In [20]:

Out [20]:

In [21]:

Out [21]:

In [32]:

In [24]:

Out [24]:

View Submission | Gradescope

zero predictor acc = sum(0 == Y train)/len(Y train)
zero_predictor recall = 0 / (0 + zero predictor_ fn)
zero_predictor_acc, zero_predictor_recall

(0.7447091707706642, 0.0)

grader.check ("g6b")

gbb results: All test cases passed!

Question 6c¢

Comment on the results from 6a and 6b. For each of FP, FN, accuracy, and recall, briefly
explain why we see the result that we do.

e 6a: Since the classifier zero predictor always predicts 0, hence false positive

is 0. Also the zero predictor will never predict the true positive, hence the
false negative is the total number of spams.

e 6b: the accuracy is the number of hams divided by the total number of emails.It

tells us how accurate our classifier is.

e FP:the ham emails gets flagged as spam and filtered out of the inbox. Since we
are predict all 0 in this case, there is no false positive in this case.

e FN: the spam emails gets mislabeled as ham and ends up in the inbox. Since we
labelled all the emails as zero, so all the emails that Y train = 1 is the
false negative.

e accuracy: the accuracy is the number of hams divided by the total number of
emails. Since we are predict all 0 in this case, the sum of true positive plus
true negative is equal to the sum of Y train ==

e recall: Since true positive is 0 in our case, the result is 0.

Question 6d

Compute the precision, recall, and false-alarm rate of the 1ogisticregression classifier
created and trained in Question 5. Do NOT use any sxicarn functions, with the exception
of the .preaict method of your model object.

Y pred = model.predict (X train)

tp = sum((Y _pred == Y train) & (Y _train == 1)
fp = sum((Y_pred != Y train) & (Y _train == 0)
fn = sum((Y_pred != Y train) & (Y _train == 1)
tn = sum((Y pred == Y train) & (Y train == 0)

logistic predictor precision = tp/(tp + fp)
logistic predictor recall = tp / (tp + fn)
logistic predictor far = fp / (fp +tn)

grader.check ("g6d")

gbd results: All test cases passed!

Question 6e

https://www.gradescope.com/courses/353100/assignments/1993791/submissions/123391317?view=files

13/16

2025/9/18 11:48

In [30]:

Out [30]:

View Submission | Gradescope

Are there more false positives or false negatives when using the logistic regression
classifier from Question 5?

e Since the fp=122 and the fn=1699, there is more false negatives than false

positive.

Question 6f

Our logistic regression classifier got 75.76% prediction accuracy (number of
correct predictions / total). How does this compare with predicting 0 for every
email?

Given the word features we gave you above, name one reason this classifier is
performing poorly. Hint: Think about how prevalent these words are in the email
set.

Which of these two classifiers would you prefer for a spam filter and why?
Describe your reasoning and relate it to at least one of the evaluation metrics

you have computed so far.

The logistic regression classifier is better since the predict 0 classifier
yields 74.4% which is less than 75.76%

As we can see, the encoded feature in X trains have many rows with all 0. It
means the words we are choose barely occur in the training set, this makes us
get many redundant data and the classifer can't use them to distinguish spam or
ham.

I would choose the zero predictor. As we can see, the logistic regression
classifier has 2% False-alarm rate, while the zero predictor has the 0% false-
alarm rate, I'd rather filter less spam emails but filter out my important main

email.

Congratulations! You have finished Project 2A!

In Project 2B, you will focus on building a spam/ham email classifier with logistic
regression. You will be well-prepared to build such a model: you have considered what is
in this data set, what it can be used for, and engineered some features that should be
useful for prediction.

To double-check your work, the cell below will rerun all of the autograder tests.

grader.check_all()

g2 results: All test cases passed!
g4 results: All test cases passed!
g5 results: All test cases passed!
gba results: All test cases passed!
g6b results: All test cases passed!

g6d results: All test cases passed!

Submission

https://www.gradescope.com/courses/353100/assignments/1993791/submissions/123391317?view=files

14/15

2025/9/18 11:48

View Submission | Gradescope

v proj2b.ipynb & Download

In [256]:

In [257]:

Initialize Otter
import otter
grader = otter.Notebook ("proj2b.ipynb")

Project 2B: Spam/Ham Classification - Build Your
Own Model

Feature Engineering, Classification, Cross Validation
Due Date: Sunday 4/28, 11:59 PM PDT

Collaboration Policy

Data science is a collaborative activity. While you may talk with others about the
project, we ask that you write your solutions individually. If you do discuss the
assignments with others please include their names at the top of your notebook.

Collaborators: list collaborators here

This Assignment

In this project, you will be building and improving on the concepts and functions
that you implemented in Project 2A to create your own classifier to distinguish
spam emails from ham (non-spam) emails. We will evaluate your work based on
your model's accuracy and your written responses in this notebook.

After this assignment, you should feel comfortable with the following:

e Using sklearn libraries to process data and fit models
e Validating the performance of your model and minimizing overfitting

e Generating and analyzing precision-recall curves
Warning

This is a real world dataset- the emails you are trying to classify are actual spam
and legitimate emails. As a result, some of the spam emails may be in poor taste
or be considered inappropriate. We think the benefit of working with realistic data
outweighs these innapropriate emails, and wanted to give a warning at the
beginning of the project so that you are made aware.

Run this cell to suppress all FutureWarnings
import warnings

warnings.filterwarnings ("ignore", category=FutureWarning)

Score Breakdown

Question Points
1 6
2a 4

https://www.gradescope.com/courses/353100/assignments/2015994/submissions/124218039?view=files 2/12

2025/9/18 11:48 View Submission | Gradescope

Question Points
2b 2

3 3

4 15
Total 30

Setup and Recap

Here we will provide a summary of Project 2A to remind you of how we cleaned
the data, explored it, and implemented methods that are going to be useful for
building your own model.

In [258]: import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
$matplotlib inline

import seaborn as sns

sns.set (style = "whitegrid",
color codes = True,
font scale = 1.5)

Loading and Cleaning Data

Remember that in email classification, our goal is to classify emails as spam or not
spam (referred to as "ham") using features generated from the text in the email.

The dataset consists of email messages and their labels (0 for ham, 1 for spam).
Your labeled training dataset contains 8348 labeled examples, and the unlabeled
test set contains 1000 unlabeled examples.

Run the following cell to load in the data into DataFrames.

The tra:n DataFrame contains labeled data that you will use to train your model.
It contains four columns:

1. id: An identifier for the training example
2 5 : The subject of the email

3. email: The text of the email
4

spam: 1 1f the email is spam, 0 if the email is ham (not spam)

The test DataFrame contains 1000 unlabeled emails. You will predict labels for
these emails and submit your predictions to the autograder for evaluation.

In [259]: import zipfile
with zipfile.ZipFile('spam ham data.zip') as item:

item.extractall ()

https://www.gradescope.com/courses/353100/assignments/2015994/submissions/124218039?view=files 3/12

2025/9/18 11:48 View Submission | Gradescope

In [260]: original training data = pd.read csv('train.csv')

test = pd.read csv('test.csv')

Convert the emails to lower case as a first step to processing the

text

original training data['email'] =

original training data['email'].str.lower()
test['email'] = test['email'].str.lower ()

original training data.head()

Out [260]: id subject \
Subject: A&L Daily to be auctioned in bankrupt...
Subject: Wired: "Stronger ties between ISPs an...
Subject: It's just too small

Subject: liberal defnitions\n
Subject: RE: [ILUG] Newbie seeks advice - Suse...

=sw N RO
=sw N e o

email spam
url: http://boingboing.net/#85534171\n date: n... 0
url: http://scriptingnews.userland.com/backiss...
<html>\n <head>\n </head>\n <body>\n <font siz...
depends on how much over spending vs. how much...

Ssw N PO
o O = O

hehe sorry but if you hit caps lock twice the

Feel free to explore the dataset above along with any specific spam and ham
emails that interest you. Keep in mind that our data may contain missing values,
which are handled in the following cell.

Tn [261]: # Fill any missing or NAN values
print ('Before imputation:')
print (original training data.isnull() .sum())
original training data = original_ training data.fillna('")

print ('After imputation:')
print (original training data.isnull() .sum())

Before imputation:

id 0
subject 6
email 0
spam 0

dtype: int64

After imputation:

id 0
subject 0
email 0
spam 0

dtype: int64

Training/Validation Split

Recall that the training data we downloaded is all the data we have available for
both training models and validating the models that we train. We therefore split
the training data into separate training and validation datsets. You will need this
validation data to assess the performance of your classifier once you are finished
training.

https://www.gradescope.com/courses/353100/assignments/2015994/submissions/124218039?view=files 4/12

2025/9/18 11:48

View Submission | Gradescope

As in Project 2A, we set the seed (random_state) to 42. Do not modify this in the
following questions, as our tests depend on this random seed.

In [262]: # This creates a 90/10 train-validation split on our labeled data
from sklearn.model selection import train_ test split
train, val = train test split(original training data, test_size =

0.1, random state = 42)

We must do this in order to preserve the ordering of emails to
labels for words in texts
train = train.reset index(drop = True)

Feature Engineering

In order to train a logistic regression model, we need a numeric feature matrix X
and a vector of corresponding binary labels y. To address this, in Project 2A, we
implemented the function words in texts, which creates numeric features derived
from the email text and uses those features for logistic regression.

For this project, we have provided you with an implemented version of

words_in texts. Remember that the function outputs a 2-dimensional NumPy array
containing one row for each email text. The row should contain eithera 0 or a 1
for each word in the list: 0 if the word doesn't appear in the text and 1 if the word
does.

In [263]: def words in texts (words, texts):

Args:

words (list): words to find

texts (Series): strings to search in
Returns:

NumPy array of Os and 1ls with shape (n, p) where n is the
number of texts and p is the number of words.
Vi
import numpy as np
indicator array = 1 * np.array([texts.str.contains(word) for word
in words]).T

return indicator_array

Run the following cell to see how the function works on some dummy text.

In [264]: words_in texts(['hello', 'bye', 'world'], pd.Series(['hello', 'hello
worldhello']))
Out [264]: array([[1, 0, 0],
[1, 0, 111)

EDA and Basic Classification

In Project 2A, we proceeded to visualize the frequency of different words for both
spam and ham emails, and used words_in_texts (words, train('email']) to directly to
train a classifier. We also provided a simple set of 5 words that might be useful as
features to distinguish spam/ham emails.

https://www.gradescope.com/courses/353100/assignments/2015994/submissions/124218039?view=files 5/12

2025/9/18 11:48

In [265]:

Out [265]:

In [266]:

View Submission | Gradescope

LogisticRegression classifier from

We then built a model using the using the

scikit-learn|.

Run the following cell to see the performance of a simple model using these
words and the tr=:n dataframe.

some words = ['drug', 'bank', 'prescription', 'memo', 'private']

X _train = words_in texts(some words, train['email'])

Y train = np.array(train['spam'])

X train[:5], Y train[:5]

(array([[O, O, O, O, O],
(o, o, o, o, o1,
(o, o, o, o, 01,
fo, o, o, o0, 01,
o, o, 0, 1, 011y,

array ([0, O, 0, 0, 01))

from sklearn.linear model import LogisticRegression

model = LogisticRegression(solver = 'lbfgs')
model.fit (X _train, Y train)

training accuracy = model.score(X train, Y train)
print ("Training Accuracy: ", training_accuracy)

Training Accuracy: 0.7576201251164648

Evaluating Classifiers

In our models, we are evaluating accuracy on the training set, which may provide
a misleading accuracy measure. In Project 2A, we calculated various metrics to
lead us to consider more ways of evaluating a classifier, in addition to overall
accuracy. Below is a reference to those concepts.

Presumably, our classifier will be used for filtering, i.e. preventing messages
labeled sparm from reaching someone's inbox. There are two kinds of errors we can
make:

e False positive (FP): a ham email gets flagged as spam and filtered out
of the inbox.

e False negative (FN): a spam email gets mislabeled as ham and ends up in
the inbox.

To be clear, we label spam emails as 1 and ham emails as 0. These definitions
depend both on the true labels and the predicted labels. False positives and false
negatives may be of differing importance, leading us to consider more ways of
evaluating a classifier, in addition to overall accuracy:

Precision measures the proportion of emails flagged as spam that are

TP
TP+FP
actually spam.

https://www.gradescope.com/courses/353100/assignments/2015994/submissions/124218039?view=files 6/12

2025/9/18 11:48

View Submission | Gradescope

Recall measures the proportion % of spam emails that were correctly

flagged as spam.

. FP .
False-alarm rate measures the proportion gp_ 7 of ham emails that were
incorrectly flagged as spam.

The two graphics below may help you understand precision and recall visually:
l'iprecision_recall

Note that a true positive (TP) is a spam email that is classified as spam, and a true
negative (TN) is a ham email that is classified as ham.

Moving Forward - Building Your Own Model

With this in mind, it is now your task to make the spam filter more accurate. In
order to get full credit on the accuracy part of this assignment, you must get at
least 88% accuracy on the test set. To see your accuracy on the test set, you will
use your classifier to predict every email in the tes: DataFrame and upload your
predictions to Gradescope.

Gradescope limits you to four submissions per day. You will be able to see your
accuracy on the entire test set when submitting to Gradescope.

Here are some ideas for improving your model:

1. Finding better features based on the email text. Some example features
are:

. Number of characters in the subject / body

. Number of words in the subject / body

Use of punctuation (e.g., how many '!'s were there?)

Number / percentage of capital letters

aos W N

Whether the email is a reply to an earlier email or a forwarded email

2. Finding better (and/or more) words to use as features. Which words are
the best at distinguishing emails? This requires digging into the email
text itself.

3. Better data processing. For example, many emails contain HTML as well
as text. You can consider extracting out the text from the HTML to help
you find better words. Or, you can match HTML tags themselves, or even
some combination of the two.

4. Model selection. You can adjust parameters of your model (e.g. the
regularization parameter) to achieve higher accuracy. Recall that you
should use cross-validation to do feature and model selection properly!

Otherwise, you will likely overfit to your training data.

You may use whatever method you prefer in order to create features, but you are
not allowed to import any external feature extraction libraries. In addition,
you are only allowed to train logistic regression models. No decision trees,
random forests, k-nearest-neighbors, neural nets, etc.

We have not provided any code to do this, so feel free to create as many cells as
you need in order to tackle this task. However, answering questions 1, 2, and 3
should help guide you.

Note: You may want to use your validation data to evaluate your model and get a
better sense of how it will perform on the test set. Note, however, that you may overfit

https://www.gradescope.com/courses/353100/assignments/2015994/submissions/124218039?view=files 712

2025/9/18 11:48

In []:

In [1:

View Submission | Gradescope

to your validation set if you try to optimize your validation accuracy too much.
Alternatively, you can perform cross-validation on the entire training set.

Question 1:

train copy = train.reset index(drop=True) # We must do this in order

to preserve the ordering of emails to labels for words in texts

word_freq list = words_in_texts(['refund', 'success', 'honor','call',
'earn', 'extra'], train copy['email'])

sale = [item[0] for item in word freg list]

free = [item[1] for item in word freg list]

investment = [item[2] for item in word freq list]

opportunity = [item[3] for item in word freq list]

click = [item[4] for item in word freq list]

lowest = [item[5] for item in word freq list]

train subset = pd.DataFrame (data= {'sale':sale, 'free':free,

'investment':investment, 'opportunity':opportunity, 'click':click,
'lowest': lowest,

'spam _or not':train['spam']})

new_col = train subset['spam or not'].replace({0:'Ham',6 1:'Spam'},

inplace = True)

melted train = train subset.melt ('spam or not')

plt.figure(figsize = (10,10))

sns.barplot (x="variable", y="value", hue = 'spam or not', ci =None,
data = melted train)

plt.xlabel ("Words™")

plt.ylabel ("Proportion of Emails")

plt.title('Frequency of Words in Spam/Ham Emails')
plt.gca().legend() .set title('")

feature words = ["<html>", "<head>", "<body>", "
", "font","
<title>",
"div>", "<center>", "align", "table", "offer", "deal",
"please", "address", "money","!!", "100%", "sale",
"investment",

"business", "guarantee","credit", "earn",

"did", "free", "today", "information", "share",

"url:", "click", "height", "fill out", "unsubscribe",
"shipping"]

X train = words in texts(feature words, train.loc[:,'email'])
Y train = train.loc[:, 'spam']

X Val = words in texts(feature words, val['email'])

Y Val = val['spam'].values

model = LogisticRegression()
model.fit (X train,Y train)

val_ accuracy = model.score(X Val, Y Val)
train_accuracy = model.score(X_ train, Y train)
print ('Validation Accuracy:', val accuracy)
print ('train Accuracy:', train_accuracy)

Feature/Model Selection Process

In this following cell, describe the process of improving your model. You should
use at least 2-3 sentences each to address the follow questions:

https://www.gradescope.com/courses/353100/assignments/2015994/submissions/124218039?view=files 8/12

2025/9/18 11:48

1.

View Submission | Gradescope
How did you find better features for your model?
. What did you try that worked or didn't work?

. What was surprising in your search for good features?

First I utilize the "Frequency of Words in Spam/Ham Emails" plot we
generate in proj-2a. I repeatly apply the words that I come up with and
selected the words which has a significant difference between spam and
ham.

. When I was thinking of the words to try, I first select the spam's
row's out and observe that it contains many html related format, hence
I selected the frequent words. Which didn't work is sometimes the words
that I choose has a low occurrence in both spam and ham. For example "\
<div>", Then I slightly change its format to "div>" and it worked.

Some words just didn't appears as I expect. For example, at the
beginning I thought "Congratulations" or "Congratz" should show up
greatly in both case but turns out it didn't. And I tried the word
"unsubscribe" randomly but turns out it appeared frequently in spam
email. It just a bit changed my mind that the spam emails are not that

malicious.

Optional: Build a Decision Tree model with reasonably good accuracy. What
features does the decision tree use first?

Question 2: EDA

In the cell below, show a visualization that you used to select features for your
model.

Include:

A plot showing something meaningful about the data that helped you
during feature selection, model selection, or both.
Two or three sentences describing what you plotted and its implications

with respect to your features.

Feel free to create as many plots as you want in your process of feature selection,
but select only one for the response cell below.

You should not just produce an identical visualization to Question 3 in Project

2A. Specifically, don't show us a bar chart of proportions, or a one-dimensional
class-conditional density plot. Any other plot is acceptable, as long as it comes
with thoughtful commentary. Here are some ideas:

Consider the correlation between multiple features (look up correlation

plots and sns.heatmap) .

co-occur relatively frequently, or you might be able to design a
feature that captures all html tags and compare it to these).
. Visualize which words have high or low values for some useful
statistic.
Visually depict whether spam emails tend to be wordier (in some sense)

than ham emails.

Question 2a

Generate your visualization in the cell below.

https://www.gradescope.com/courses/353100/assignments/2015994/submissions/124218039?view=files

Try to show redundancy in a group of features (e.g. body and html might

9/12

2025/9/18 11:48 View Submission | Gradescope

In []: corr df = train
words = ["money","offer", "final","sale","price"]
corr df['money'] = words_in_ texts(['money'],train['email']) #each

list tells you whether word is in the ith email or not

corr df['offer'] = words_in texts(['offer'],train['email'])
corr df['final'] = words_in_ texts(['final'],train['email'])
corr df['sale'] = words_in texts(['sale'],train['email'])

corr df['price'] = words_in texts(['price'],train['email'])

correlation = corr_ df[words]
sns.heatmap (correlation.corr());
plt.title("heat map of words pairs");

Question 2b

Write your commentary in the cell below.

I choose to generate a heatmap graph of 5 words pairs which I feel they have the
high probability appear together hence may have a high correlation. Since the
high correlated words just restate the information and even worse,
multicollinearity sometimes will mess up the prediction so I want to prevent this
situation. As the graph above shows, most pairs don't have high correlation, which
is good, but as for the offer and price pair, the correlation is about 0.4, hence I
evict the word "price" anyway.

Question 3: ROC Curve

In most cases we won't be able to get 0 false positives and 0 false negatives, so we
have to compromise. For example, in the case of cancer screenings, false
negatives are comparatively worse than false positives — a false negative means
that a patient might not discover that they have cancer until it's too late, whereas
a patient can just receive another screening for a false positive.

Recall that logistic regression calculates the probability that an example belongs
to a certain class. Then, to classify an example we say that an email is spam if our
classifier gives it > 0.5 probability of being spam. However, we can adjust that
cutoff: we can say that an email is spam only if our classifier gives it > 0.7
probability of being spam, for example. This is how we can trade off false positives
and false negatives.

The ROC curve shows this trade off for each possible cutoff probability. In the cell
below, plot a ROC curve for your final classifier (the one you use to make
predictions for Gradescope) on the training data. Refer to Lecture 20 to see how to
plot an ROC curve.

Hint: You'll want to use the .predict proba method for your classifier instead of
.predict SO you get probabilities instead of binary predictions.

n []: from sklearn.metrics import roc curve

fpr, tpr, _ = roc_curve(Y train, [i[l] for i in
model.predict proba (X train)])

plt.step (fpr, tpr)

plt.xlabel ("False Positive Rate")

plt.ylabel ("True Positive Rate")
plt.ylim([-0.01, 1.01])

https://www.gradescope.com/courses/353100/assignments/2015994/submissions/124218039?view=files 10/12

2025/9/18 11:48

In []:

In [1:

In [J:

View Submission | Gradescope

plt.xlim([-0.01, 1.011)
plt.title ("ROC curve");

Question 4: Test Predictions

The following code will write your predictions on the test dataset to a CSV file. You
will need to submit this file to the "k Test Predictions" assignment on
Gradescope to get credit for this question.

Save your predictions in a 1-dimensional array called tcst predictions. Please
make sure you've saved your predictions to tcst predictions as this is how
part of your score for this question will be determined.

Remember that if you've performed transformations or featurization on the
training data, you must also perform the same transformations on the test
data in order to make predictions. For example, if you've created features for
the words "drug" and "money" on the training data, you must also extract the
same features in order to use scikit-learn's .preaict (...) method.

Note: You may submit up to 4 times a day. If you have submitted 4 times on a
day, you will need to wait until the next day for more submissions.

Note that this question is graded on an absolute scale based on the accuracy your
model achieves on the overall test set, and as such, your score does not depend
on your ranking on Gradescope.

The provided tests check that your predictions are in the correct format, but you must
additionally submit to Gradescope to evaluate your classifier accuracy.

X test = words in texts(feature words, test['email'])
test predictions = model.predict (X test)

grader.check ("g4")

The following cell generates a CSV file with your predictions. You must submit
this CSV file to the "Project 2B Test Predictions" assignment on Gradescope to
get credit for this question.

Note that the file will appear in your DataHub, you must navigate to the 11
directory in your DataHub to download the file.

from datetime import datetime

Assuming that your predictions on the test set are stored in a 1-
dimensional array called
test predictions. Feel free to modify this cell as long you create

a CSV in the right format.

Construct and save the submission:
submission df = pd.DataFrame ({

"Id": test['id'],

"Class": test predictions,

}, columns=["'Id', Class'])

https://www.gradescope.com/courses/353100/assignments/2015994/submissions/124218039?view=files 11/12

2025/9/18 11:48 View Submission | Gradescope

timestamp = datetime.isoformat (datetime.now()) .split(".") [0]
submission df.to csv("submission {}.csv".format (timestamp),

index=False)

print ('Created a CSV file:

{}.'.format ("submission {}.csv".format (timestamp)))

print ('You may now upload this CSV file to Gradescope for scoring.')

Congratulations! You have completed Project 2B!

To double-check your work, the cell below will rerun all of the autograder tests.

In []: grader.check all()

Submission

Make sure you have run all cells in your notebook in order before running the cell
below, so that all images/graphs appear in the output. The cell below will generate

a zip file for you to submit. Please save before exporting!

In []: # Save your notebook first, then run this cell to export your

grader.export ()

» proj2b.pdf

» .OTTER_LOG

» _zip_filename__

Project 2B

B Select each question to review feedback and grading details.

Student
Luna Tian

Total Points
3/3pts

Autograder Score
3.0/3.0

Passed Tests
Public Tests
g4 (3/3)

https://www.gradescope.com/courses/353100/assignments/2015994/submissions/124218039?view=files

& Download

& Download

& Download

@ Graded

12112

